matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweise!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Beweise!
Beweise! < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise!: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:22 Mi 10.11.2004
Autor: Deuterinomium

Ich habe diese Frage noch in keinem anderen Forum gestellt.

Hallo!

Ich sitze seit knapp 3 Stunden an diesen Aufgaben und komme nicht weiter:

Beweise folgende Aussagen:
[mm]

(i) [mm] \sum_{k=0}^{n} [/mm] {n [mm] \choose [/mm] k}  = [mm] 2^n [/mm]
(ii) [mm] \sum_{k=0}^{n} (-1)^k{n \choose k} [/mm] = 0
(iii)Für alle x größer gleich null: [mm] (1+x)^n [/mm] ist größer gleich [mm] 1+n*x+\bruch{n*(n-1)}{2} x^2 [/mm] + [mm] \bruch{n*(n-1)(n-2)}{6} x^3 [/mm] + [mm] \bruch{n*(n-1)(n-2)(n-3)}{24} x^4 [/mm]
(iv) [mm] \sum_{i=1}^{n} \sum_{j=1}^{i} [/mm] a_ij =  [mm] \sum_{j=1}^{n} \sum_{i=j}^{n} [/mm] a_ij
(v) [mm] \sum_{j=1}^{n} \sum_{i=1}^{n}a_ij [/mm] = [mm] \sum_{v=2}^{n+1} \sum_{m=1}^{v-1}a_m,v-m [/mm] + [mm] \sum_{v=2}^{n} \sum_{m=v}^{n} a_m,n+v-m [/mm]

[mm/]

Ich brauche dringend Hilfe. Zwar glaube ich, dass die Beweise sehr simpel zu führen sind, aber irgendwie habe ich eine Denkblockade. Brauche dringend Ansätze

Vielen Dank schon mal vorab!  

        
Bezug
Beweise!: (i) bis (iv):siehe...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Mi 10.11.2004
Autor: Marcel

hier!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]