matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenBasis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Basis
Basis < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Di 08.04.2008
Autor: Kueken


Hi!

Also auf folgenden Seiten habe ich versucht autodidaktisch das mit der Basis zu verstehen. Es geht um Beispiel 2 auf der ersten Seite. Ich verstehe wie es zu den Gleichungen kommt. Aber was ist jetzt die Basis? Es steht ja da, die rot unterlegten Felder. Dann wären das 3 Vektoren (34,-19,11,0,0); (-29,1,0,1,0); (-4,10,0,0,1) richtig?
Jetzt hab ich versucht die Aufgabe 2 zu machen.
Ich hatte raus:
[mm] x_{1} [/mm] = [mm] \bruch{1}{2} [/mm] * [mm] (x_{3} [/mm] + [mm] x_{4}) [/mm]
[mm] x_{2} [/mm] = [mm] \bruch{1}{2} [/mm] * (- [mm] x_{3} [/mm] - [mm] x_{4}) [/mm]
[mm] x_{3} [/mm] = r
[mm] x_{4} [/mm] = s

Wenn ich das jetzt so hinschreibe wie in Beispiel 2, habe ich
[mm] x_{1} [/mm] = [mm] \bruch{1}{2} [/mm] * (1r + 1s)
[mm] x_{2} [/mm] = [mm] \bruch{1}{2} [/mm] * (-1r - 1s)
[mm] x_{3} [/mm] =                 1r +0s
[mm] x_{4} [/mm] =                 0r + 1s

Also wären die Basisvektoren
[mm] \vec{a_{1}} [/mm] = [mm] \vektor{1 \\ -1 \\ 1 \\ 0} [/mm]
[mm] \vec{a_{2}} [/mm] = [mm] \vektor{1 \\ -1 \\ 0 \\ 1} [/mm]

Jetzt steht in meinem Lösungsbuch aber die Basis wäre
( [mm] \vektor{-1 \\ -1 \\ 2 \\ 0} [/mm] ; [mm] \vektor{-1 \\ -1 \\ 0 \\ 2} [/mm]

Ich mein, dass sieht meinen beiden schon ein bisschen ähnlich, aber is ja trotzdem falsch.
Was war denn mein Fehler?

Liebe Grüße und vielen vielen Dank
Kerstin



Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Di 08.04.2008
Autor: statler

Hi Kerstin!

> Jetzt steht in meinem Lösungsbuch aber die Basis wäre
> ( [mm]\vektor{-1 \\ -1 \\ 2 \\ 0}[/mm] ; [mm]\vektor{-1 \\ -1 \\ 0 \\ 2}[/mm]
>  
> Ich mein, dass sieht meinen beiden schon ein bisschen
> ähnlich, aber is ja trotzdem falsch.
>  Was war denn mein Fehler?

Dein 'Fehler' ist, daß es die Basis nicht gibt. Man kann nur von einer Basis sprechen, sie ist in der Regel nicht eindeutig bestimmt.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 Di 08.04.2008
Autor: Kueken

Hi!
Danke schonmal für deine Antwort!

Also ist meine Rechnung richtig ja?

LG
Kerstin

Bezug
                        
Bezug
Basis: Was ist ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Di 08.04.2008
Autor: statler

...  denn die Aufgabe 2? Oder übersehe ich etwas?

Dieter

Bezug
                        
Bezug
Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Di 08.04.2008
Autor: statler

Hi!

> Also ist meine Rechnung richtig ja?

Nee, das ist sie leider nicht. Es muß [mm] x_{1} [/mm] = [mm] x_{2} [/mm] sein. (Ich habe Aufg. 2 dank Angelas Hilfe gefunden.)

Gruß
Dieter


Bezug
                                
Bezug
Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Di 08.04.2008
Autor: Kueken

hab leider die mitteilung erst jetzt gelesen... man muss ja auch mal Kinder hüten =)
ok, also hab ich was falsch gerechnet. Aber der Weg ist schonmal nicht schlecht oder?

Vielen dank abermals
Liebe Grüße
Kerstin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]