matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikAufspannender Baum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Mathematik" - Aufspannender Baum
Aufspannender Baum < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufspannender Baum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Di 10.05.2011
Autor: rainman_do

Aufgabe
Beweisen Sie: Wenn alle Kantengewichte in einem zusammenhängenden, gewichteten Graphen $G=(V,E)$ mit Kostenfunktion $c: E [mm] \rightarrow \IR$ [/mm] verschieden sind, dann ist der aufspannende Baum mit minimalen Gesamtkosten eindeutig.

Hallo,

hätte vielleicht jemand einen Ansatz für mich, ich weiß einfach nicht wie ich anfangen soll...ich hatte es mal mit einem Widerspruch versucht...angenommen es gibt einen weiteren aufspannenden Baum mit minimalen Gesamtkosten, dann....aber was ist dann? :)

vielen Dank schon mal im voraus

        
Bezug
Aufspannender Baum: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Mi 11.05.2011
Autor: SEcki


> hätte vielleicht jemand einen Ansatz für mich, ich weiß
> einfach nicht wie ich anfangen soll...ich hatte es mal mit
> einem Widerspruch versucht...angenommen es gibt einen
> weiteren aufspannenden Baum mit minimalen Gesamtkosten,
> dann....aber was ist dann? :)

Ordne die Kanten der beiden Bäume nach ihrem gewicht. Dann gibt es eine erste Stelle, an der die Gewichte differieren. Füge jetzt die eine Kante zum andren Baum hinzu und finde einen Widerspruch.

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]