matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAuflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Auflösen
Auflösen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Mi 20.01.2010
Autor: phily

Aufgabe
[mm] 4^{2x-1} [/mm] = [mm] \bruch{8^{x+1}}{2^{3x-3}} [/mm]

Hallo Leute.

Ich brauche super drigend eure Hilfe....Ich hab leider so überhaupt garkeine Ahnung wie ich eine Gleichung nach x auflöse, wenn diese Variable im Exponenten steht....Bitte helft mir! Kann mir irgendwer von euch eine exemplarische Lösung zu der o.a. Gleichung geben?? Ich muss das irgendwie verstehen.
Wäre super nett.
Vielen Dank im Vorraus.

Gruß phily
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mi 20.01.2010
Autor: schachuzipus

Hallo phily und ganz herzlich [willkommenmr],

> [mm]4^{2x-1}[/mm] = [mm]\bruch{8^{x+1}}{2^{3x-3}}[/mm]
>  Hallo Leute.
>  
> Ich brauche super drigend eure Hilfe....Ich hab leider so
> überhaupt garkeine Ahnung wie ich eine Gleichung nach x
> auflöse, wenn diese Variable im Exponenten steht....Bitte
> helft mir! Kann mir irgendwer von euch eine exemplarische
> Lösung zu der o.a. Gleichung geben?? Ich muss das
> irgendwie verstehen.

Du solltest dir dringendst mal die Potenzgesetze nochmal ansehen

Es ist doch [mm] $2^{3x-3}=2^{3\cdot{}(x-1)}=\left(2^3\right)^{x-1}=8^{x-1}$ [/mm]

Also [mm] $4^{2x-1} [/mm] = [mm] \bruch{8^{x+1}}{2^{3x-3}}$ [/mm]

[mm] $\gdw 4^{2x-1}= \bruch{8^{x+1}}{8^{x-1}}=8^{x+1-(x-1)}=8^2=64=2^6$ [/mm]


Und [mm] $4^{2x-1}=\left(2^2\right)^{2x-1}=2^{4x-2}$ [/mm]

Also [mm] $2^{\red{4x-2}}=2^{\red{6}}$ [/mm]

Wie geht's nun weiter?


>  Wäre super nett.
>  Vielen Dank im Vorraus.

Bitte voraus nur mit einem "r"

>  
> Gruß phily
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]