matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikAnzahl der Permutationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Mathematik" - Anzahl der Permutationen
Anzahl der Permutationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Permutationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:10 Sa 01.12.2012
Autor: Lu-

Aufgabe
Sei I(n,k) die Anzhal der Permutationen [mm] \pi \in S_n [/mm] mit k Inversionen.
Zeige dass für n [mm] \ge [/mm] k
I(n+1, k) = I(n,k)+ I(n+1, k-1)
gilt.



Sei [mm] (\pi_1 [/mm] ,.., [mm] \pi_n [/mm] , [mm] \pi_{n+1}) [/mm] eine n+1 elementige Permutation mit k inversionen:

) Ist [mm] \pi_{n+1} [/mm] =n+1 (Fixpunkt)
Dann hab ich eine n elemntige Permutation mit k Inversen

-) Ist [mm] \pi_{i} [/mm] =n ( i [mm] \le [/mm] n )
Konstruiere [mm] \pi [/mm] ' mit [mm] \forall [/mm] k  [mm] \in \{1,..,n+1} [/mm] ohne [mm] \{i,i+1\} [/mm] ist [mm] \pi [/mm] ' (k)= [mm] \pi(k) [/mm] und [mm] \pi [/mm] ' (i) = [mm] \pi [/mm]  ' (i+1)
-> inv [mm] (\pi [/mm] ' )= k-1

Frage1: Was ist wenn  n+1 an erster Stelle steht ?
Es ist klar, dass es dann mindestens n Inversionen geben muss.

Frage2:
Warum kann es nie  bei Deiner Konstruktion vorkommen, dass aus zwei verschiedenen Ausgangspermutationen mit k Inversionen dieselbe Permutation mit (k-1) Inversionen konstruiert wird?

        
Bezug
Anzahl der Permutationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:03 So 02.12.2012
Autor: Lu-

Hallo,
keine einer idee??
LG

Bezug
                
Bezug
Anzahl der Permutationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Di 04.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Anzahl der Permutationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 03.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]