matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenAnwendung Transformationssatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Anwendung Transformationssatz
Anwendung Transformationssatz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung Transformationssatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:09 Fr 06.04.2012
Autor: xtraxtra

Aufgabe
Berechnen Sie das Integral [mm] \integral_{B^{3}_{1}(0)\backslash B^{3}_{1/\wurzel[3]{2}}(0)}^{}f(x)dx [/mm] für [mm] f:\IR^{3}\to \IR f(x):=\bruch{x_{3}}{e^{\parallel x \parallel}} [/mm]


Die Berechnung an sich ist kein Problem ich komme auf das richtige Ergebnis. Jedoch wird bei uns in der Musterlösung immer vorher eine Nullmenge aufgestellt. Dies ist glaube ich notwendig um die Transformation durchführen zu können. Ich weiß einfach nicht wie man auf diese Nullmenge kommt.
Hier die Lösung:
Wähle Kugelkoordinaten als Trafo:
[mm] \gamma (r,\varphi,\vartheta):=r(cos\varphi sin\vartheta, sin\varphi sin\vartheta,cos\vartheta) [/mm]
det [mm] D\gamma(*)=r^{2}sin\vartheta [/mm]
und für [mm] \Omega:=(1/\wurzel[3]{2},1)x(0,2\pi)x(0,\pi) [/mm] gilt
[mm] \gamma(\Omega)=(B^{3}_{1}(0)\backslash B^{3}_{1/\wurzel[3]{2}}(0))\backslash [/mm] N, [mm] N:=\{ x\in\IR^{3}:\parallel x \parallel=1/\wurzel[3]{2}\vee x_{1}\le0, x_{2}=0 \} [/mm]
Wieso wird N vom Gebiet abgezogen und wie stelle ich dieses N auf?

        
Bezug
Anwendung Transformationssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:55 So 08.04.2012
Autor: xtraxtra

Kann mir hierbei niemand weiterhelfen?
Oder ist die Frage zu schlecht formuliert?

Bezug
        
Bezug
Anwendung Transformationssatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Di 10.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]