matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte berechnen
Eigenwerte berechnen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte berechnen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:26 Mi 04.02.2015
Autor: MeMeansMe

Aufgabe 1
Sei $T$ eine Transformation von [mm] $V=P_3(\IR)$, [/mm] dem Vektorraum der Polynome maximal dritten Grades, gegeben durch:

[mm] $T(a+bx+cx^2+dx^3)=-d+(-c+d)x+(a+b-2c)x^2+(-b+c-2d)x^3$. [/mm]

Sei $B$ eine Basis von $V$ mit $B = [mm] \{\underbrace{1-x+x^3}_{b_1},\underbrace{1+x^2}_{b_2},\underbrace{1}_{b_3},\underbrace{x+x^2}_{b_4}\}$. [/mm] Berechne die Eigenwerte und Eigenvektoren von $T$.

Aufgabe 2
Sei $V = [mm] P_2(\IR)$ [/mm] und die Transformation $T$ von $V$ gegeben durch $T(f(x))=x*f'(x)+f(2)*x+f(3)$, für $f [mm] \in [/mm] V$. Bestimme die Eigenwerte von $T$ und eine Basis von $V$, die aus den Eigenvektoren von $T$ besteht.

Hallo :)

Mir geht es im Wesentlichen darum, dass mal jemand kontrolliert, ob es richtig ist, was ich hier mache. Ich fange mal mit Aufgabe eins an.

Um die Matrix [mm] $[T]_B$ [/mm] zu erhalten, wende ich $T$ auf die Basisvektoren an und schreibe die Ergebnisse als Linearkombination dieser Basisvektoren.

[mm] $T(1-x+x^3)=-1+x-x^3=-1b_1+0b_2+0b_3+0b_4$ [/mm]
[mm] $T(1+x^2)=-x-x^2+x^3=1b_1-1b_2+0b_3+0b_4$ [/mm]
[mm] $T(1)=x^2=0b_1+1b_2-1b_3+0b_4$ [/mm]
[mm] $T(x+x^2)=-x-x^2=0b_1+0b_2+0b_3-1b_4$ [/mm]

Man erhält also:

[mm] $[T]_B [/mm] = [mm] \pmat{-1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1}$ [/mm]

Um die Eigenwerte zu bestimmen, berechne ich das charakteristische Polynom, indem ich die Gleichung

[mm] $\vmat{-1-\lambda & 0 & 0 & 0 \\ 1 & -1-\lambda & 0 & 0 \\ 0 & 1 & -1-\lambda & 0 \\ 0 & 0 & 0 & -1-\lambda}=0$ [/mm]

löse. Man erhält

[mm] $(-1-\lambda)^4=0$ [/mm]

und damit die Eigenwerte

[mm] $\lambda_{1/2/3/4} [/mm] = -1$.

Um zu diesen Eigenwerten die Eigenvektoren zu finden, löse ich die Gleichung

[mm] $\pmat{-1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1}*\vektor{w\\x\\y\\z}=-1\vektor{w\\x\\y\\z}$, [/mm]

woraus man erhält

$w = 0$,
$x = 0$,
$y = y$,
$z = z$.

Indem ich erst $y=1$ und $z=0$ und danach $y=0$ und $z=1$ wähle, erhalte ich die zwei Eigenvektoren

[mm] $\vektor{0\\0\\1\\0}$ [/mm] und [mm] $\vektor{0\\0\\0\\1}$. [/mm]

Die anderen zwei Eigenvektoren sind

[mm] $$\vektor{0\\0\\0\\0}$ [/mm] und [mm] $\vektor{0\\0\\0\\0}$. [/mm]

Geht das so?

Zur zweiten Aufgabe:
Die Transformation lässt sich schreiben als

[mm] $T(a+bx+cx^2+dx^3)=(a+3b+9c)+(a+3b+4c)x+2cx^2$. [/mm]

Ich wähle die Standardbasis [mm] $B=\{\underbrace{1}_{b_1},\underbrace{x}_{b_2},\underbrace{x^2}_{b_3}\}$ [/mm] als Basis für $V$ und wende die Transformation auf diese Basiselemente an, um [mm] $[T]_B$ [/mm] zu erhalten:

$T(1) = [mm] 1+x=1b_1+1b_2+0b_3$ [/mm]
$T(x) = 3+3x = [mm] 3b_1+3b_2+0b_3$ [/mm]
[mm] $T(x^2)=9+4x+2x^2=9b_1+4b_2+2b_3$ [/mm]

Hieraus ergibt sich die Matrix

[mm] $[T]_B [/mm] = [mm] \pmat{1&3&9\\1&3&4\\0&0&2}$. [/mm]

Die Eigenwerte ergeben sich aus dem Lösen der Gleichung

[mm] $\vmat{1-\lambda&3&9\\1&3-\lambda&4\\0&0&2-\lambda}=-\lambda^3+6\lambda^2-8\lambda=0$. [/mm]

Man erhält so die Eigenwerte [mm] $\lambda_1=0$, $\lambda_2=2$ [/mm] und [mm] $\lambda_3=4$. [/mm]

Um die Eigenvektoren zu erhalten, löse ich wiederrum

[mm] $\pmat{1&3&9\\1&3&4\\0&0&2}*\vektor{x\\y\\z}=\lambda*\vektor{x\\y\\z}$. [/mm]

Damit kriege ich die Eigenvektoren

[mm] $\lambda [/mm] = 0: [mm] \vektor{-3\\1\\0}$ [/mm]
[mm] $\lambda [/mm] = 2: [mm] \vektor{3\\13\\-4}$ [/mm]
[mm] $\lambda [/mm] = 4: [mm] \vektor{1\\1\\0}$ [/mm]

Die Basis von $V$ ist also [mm] $\{\vektor{-3\\1\\0}, \vektor{3\\13\\-4}, \vektor{1\\1\\0}\}$. [/mm]

Ich hab ein paar Schritte übersprungen, sollte ich also noch etwas ausführlicher werden, bitte einfach bescheid sagen.

Danke für's Drübergucken.

Liebe Grüße.

        
Bezug
Eigenwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Mi 04.02.2015
Autor: huddel

Ich hab jetzt nicht alles genau nachgerechnet (vor allem die Transformationen nicht) aber das sieht so schlüssig aus. Deine Schritte sind auf jeden Fall die richtigen.

Bezug
                
Bezug
Eigenwerte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Mi 04.02.2015
Autor: MeMeansMe


> Ich hab jetzt nicht alles genau nachgerechnet (vor allem
> die Transformationen nicht) aber das sieht so schlüssig
> aus. Deine Schritte sind auf jeden Fall die richtigen.

Hey, super, danke :)

Könntest du (oder jemand Anders) vielleicht noch mal schauen, ob die erste Matrix (d.h. [mm] $[T]_B$ [/mm] der ersten Aufgabe, die allererste Matrix in meinem Beitrag) und die vier Eigenvektoren (auch aus der ersten Aufgabe) stimmen? Vor allem die Eigenvektoren kamen mir so "random" vor, wenn du verstehst, was ich meine.

Liebe Grüße.

Bezug
                        
Bezug
Eigenwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Mi 04.02.2015
Autor: fred97


> > Ich hab jetzt nicht alles genau nachgerechnet (vor allem
> > die Transformationen nicht) aber das sieht so schlüssig
> > aus. Deine Schritte sind auf jeden Fall die richtigen.
>
> Hey, super, danke :)
>  
> Könntest du (oder jemand Anders) vielleicht noch mal
> schauen, ob die erste Matrix (d.h. [mm][T]_B[/mm] der ersten
> Aufgabe, die allererste Matrix in meinem Beitrag) und die
> vier Eigenvektoren (auch aus der ersten Aufgabe) stimmen?



Du schreibst:

"Die anderen zwei Eigenvektoren sind

$ [mm] $$\vektor{0\\0\\0\\0}$ [/mm] $ und $ [mm] $\vektor{0\\0\\0\\0}$. [/mm] $"

Das ist natürlich Unfug. Eigenvektoren sind stets [mm] \ne [/mm] Nullvektor.


Ob die anderen beiden richtig sind, kannst Du doch mit einer Probe selbst feststellen.

FRED

> Vor allem die Eigenvektoren kamen mir so "random" vor, wenn
> du verstehst, was ich meine.
>  
> Liebe Grüße.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]