matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikVolumenintegral über Dipolfeld
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Volumenintegral über Dipolfeld
Volumenintegral über Dipolfeld < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenintegral über Dipolfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 So 29.04.2007
Autor: puehlong

Aufgabe
Betrachten Sie das Integral [mm] \integral_{V}^{}{EdV}, [/mm] wobei das Integrationsgebiet eine Kugel mit Mittelpunkt [mm] r_{0} [/mm] ist. Berechnen Sie das Integral dazu auf verschiedene Arten:

-direkt mit dem Ergebnis für das elektrische Feld
-über
[mm] \integral_{\partial V}^{}{\phi \hat n df} [/mm] = [mm] \integral_{V}^{}{grad \phi dV} [/mm]  

Dabei gilt für das elektrische Feld (Näherung fürs Fernfeld):

[mm] \vev E(\vec [/mm] r) = [mm] \frac{1}{4\pi \epsilon_{0}}\frac{3\vec n(\vec d*\vec n)-\vec d}{|\vec r - \vec r_{0}|^3} [/mm]

wobei [mm] \vec [/mm] n = [mm] (\vec [/mm] r - [mm] \vec r_{0})/|\vec [/mm] r - [mm] \vec r_{0}| [/mm]
und [mm] \vec [/mm] d der Abstand zwischen den beiden Ladungen, multipliziert mit Q (dem Betrag der Ladungen) ist (kann z.B. parallel zur z-Achse gewählt werden).

Mein Problem ist, ich weiß nicht, wie ich den ersten Teil der Aufgabe lösen soll (den zweiten hab ich noch nicht versucht, hoffe aber, den hinzubekommen, wenn ich den ersten kann), also den obigen Ausdruck für das elektrische Feld direkt zu integrieren, wie in der Aufgabenstellung beschrieben ist. Das Problem ist, dass mir nicht ganz klar ist, wie man über eine vektorwertige Funktion integriert, wenn man ein Volumenintegral hat, und ob als Ergebnis ein Skalar oder ein Vektor rauskommen sollte.

Für einen Lösungsansatz wäre ich sehr dankbar.

        
Bezug
Volumenintegral über Dipolfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 02:29 Di 01.05.2007
Autor: Nippi

Verwende für das Volumenintegral
[mm] (\integral_{V} {\underline{E} dV})_{\alpha}= \integral_{V} {E_{\alpha} dV} [/mm]
dein [mm] \underline{n} [/mm] kannst du ja nach gegebener Formel Berechnen. Bei mir kam da nur in der dritten Komponente ( also z) keine 0 vor.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]