matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert des Mittelwerts
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Erwartungswert des Mittelwerts
Erwartungswert des Mittelwerts < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert des Mittelwerts: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 Fr 18.01.2008
Autor: Antiprofi

Aufgabe
Die Dauer von Telefongesprächen (in Sekunden) bei E-plus ist ungefähr Poissonverteilt mit Parameterwert 250. Es werde eine Stichprobe vom Umfang n = 60 aus den Aufzeichnungen der Telefongesellschaft entnommen.
(a) Wie groß ist der Erwartungswert des Stichprobenmittelwertes?
(b) Wie groß ist die Varianz des Stichprobenmittelwertes?
(c) Mit welcher Wahrscheinlichkeit überschreitet der Mittelwert der Stichprobe den Erwartungswert der Grundgesamtheit? Benutzen Sie den Zentralen Grenzwertsatz.

Hallo!

Ich komme bei dieser Aufgabe nicht weiter. Ich bereite mich momentan auf eine Klausur vor und bleibe hier hängen.
Der Erwartungswert E(X) entspricht bei der Poissonverteilung ja dem Parameterwert, also E(X)= 250. Nur wie berechne ich jetzt den Erwartungswert des Stichprobenmittelwertes? Der Stichprobenmittelwert entspricht ja auch dem Parameterwert 250, oder habe ich da einen Denkfehler? Also müsste ich E(250) = ? berechnen, nur wie stell ich das denn an?

        
Bezug
Erwartungswert des Mittelwerts: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Fr 18.01.2008
Autor: luis52


>  
> Ich komme bei dieser Aufgabe nicht weiter. Ich bereite mich
> momentan auf eine Klausur vor und bleibe hier hängen.
>  Der Erwartungswert E(X) entspricht bei der
> Poissonverteilung ja dem Parameterwert, also E(X)= 250. Nur
> wie berechne ich jetzt den Erwartungswert des
> Stichprobenmittelwertes?

Hallo,

schau dir mal die Folien 5+6 []hier an.

vg Luis

Bezug
                
Bezug
Erwartungswert des Mittelwerts: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Fr 18.01.2008
Autor: Antiprofi

Also wäre
(a) [mm] E(X)=E(\overline{X})=\lambda=250 [/mm] ?
und für die Varianz:
(b) [mm] var(\overline{X})=60*\sigma^2? [/mm]

Bezug
                        
Bezug
Erwartungswert des Mittelwerts: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Fr 18.01.2008
Autor: luis52


> Also wäre
> (a) [mm]E(X)=E(\overline{X})=\lambda=250[/mm] ?

[ok]

>  und für die Varianz:
>  (b) [mm]var(\overline{X})=60*\sigma^2?[/mm]  

[notok]
[mm]var(\overline{X})=\sigma^2/60=250/60[/mm] .


vg Luis


Bezug
                                
Bezug
Erwartungswert des Mittelwerts: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Fr 18.01.2008
Autor: Antiprofi

Manchmal ist man auch wie vernagelt! :) ... Ich danke dir für die schnelle Hilfe!

Gruß, Antiprofi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]