matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEllipse-Tangente-Winkel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Ellipse-Tangente-Winkel
Ellipse-Tangente-Winkel < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ellipse-Tangente-Winkel: Tipp
Status: (Frage) überfällig Status 
Datum: 09:57 Do 21.05.2009
Autor: piccolo1986

Aufgabe
gegeben ist folgendes:

Eine Ellipse [mm] x^{2}/a^{2}+y^{2}/b^{2}=1 [/mm] mit den Brennpunkten [mm] F_{1}=(-e,0) [/mm] und [mm] F_{2}=(e,0) [/mm] , wobei gilt: [mm] e=sqrt(a^{2}-b^{2}). [/mm]

Nun soll man einen beliebigen Punkt P geben, der außerhaltb der Ellipse gibt und man soll die Tangenten, durch P an die Ellipse bilden, dann seien [mm] A_{1} [/mm] und [mm] A_{2} [/mm] die Berührungspunkte der Tangenten an die Ellipse.

Zu zeigen ist, dass der Winkel [mm] A_{1}PF_{1} [/mm] und der Winkel [mm] A_{2}PF_{2} [/mm] gleich groß sind.

Also ich habs mal analytisch versucht und jeweils die Geradengleichungen durch [mm] A_{1} [/mm] und P, [mm] A_{2} [/mm] und P, [mm] F_{1} [/mm] und P und [mm] F_{2} [/mm] und P aufgestellt und dann den Schnittwinkel berechnet, ich komm auch bei beiden Winkeln auf Terme, allerdings bräuchte man noch irgendeinen Zusammenhang zwischen [mm] A_{1} [/mm] und [mm] A_{2}, [/mm] den ich leider noch nicht gefunden hab. Mein Übungsleiter meinte auch, dass der analytische Weg ziemlich kompliziert ist, und es geometrisch wohl leichter ist.

Dabei soll sollen die Punkte [mm] F_{1} [/mm] und [mm] F_{2} [/mm] an den jeweiligen Tangenten gespiegelt werden und dann gibts da kongruente Dreiecke irgendwo, leider komm ich da nicht weiter.

Hat vielleicht jemand von euch noch nen Tipp??

mfg

piccolo

        
Bezug
Ellipse-Tangente-Winkel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mo 25.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]