MatheRaum - Offene Informations- und Nachhilfegemeinschaft für Mathematik
URL: http://www.schulmatheforum.de/forum/Stammfunktion_anschaulich/t1091122


Stammfunktion anschaulich < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion anschaulich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 So 22.04.2018
Autor: Schmetterling99

Hallo,
die Stammfunktion F einer Funktion f ist ja nicht eindeutig. Jetzt habe ich mich gefragt, was es denn bei bestimmten Integralen für eine Auswirkung hat, wenn ich jetzt bspw für [mm] f(x)=x^2 [/mm] auf [0;3] die Stammfunktion F(x)= [mm] 1/3x^3+2 [/mm] nehme oder die Stammfunktion [mm] F(x)=1/3x^3+100. [/mm] Rein rechnerisch hebt sich das ja auf, wenn ich die Integralgrenzen einsetze, s.d. es egal ist, ob da jetzt +2 oder +100 steht.
Aber wenn ich mir das am Graphen klar machen möchte, klappt es nicht wirklich. Die Fläche bei [mm] F(x)=1/3x^3+100 [/mm] ist doch viel "höher" und somit der Flächeninhalt eigentlich größer. Wo ist mein Denkfehler?

        
Bezug
Stammfunktion anschaulich: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 So 22.04.2018
Autor: fred97


> Hallo,
>  die Stammfunktion F einer Funktion f ist ja nicht
> eindeutig. Jetzt habe ich mich gefragt, was es denn bei
> bestimmten Integralen für eine Auswirkung hat, wenn ich
> jetzt bspw für [mm]f(x)=x^2[/mm] auf [0;3] die Stammfunktion F(x)=
> [mm]1/3x^3+2[/mm] nehme oder die Stammfunktion [mm]F(x)=1/3x^3+100.[/mm] Rein
> rechnerisch hebt sich das ja auf, wenn ich die
> Integralgrenzen einsetze, s.d. es egal ist, ob da jetzt +2
> oder +100 steht.
> Aber wenn ich mir das am Graphen klar machen möchte,
> klappt es nicht wirklich. Die Fläche bei [mm]F(x)=1/3x^3+100[/mm]
> ist doch viel "höher" und somit der Flächeninhalt
> eigentlich größer. Wo ist mein Denkfehler?

Für die Fläche musst Du  doch den  Graphen von f und nicht  den von F betrachten.




Bezug
        
Bezug
Stammfunktion anschaulich: zeichnerische Betrachtung
Status: (Antwort) fertig Status 
Datum: 15:21 Mo 23.04.2018
Autor: Al-Chwarizmi


> die Stammfunktion F einer Funktion f ist ja nicht
> eindeutig. Jetzt habe ich mich gefragt, was es denn bei
> bestimmten Integralen für eine Auswirkung hat, wenn ich
> jetzt bspw für [mm]f(x)=x^2[/mm] auf [0;3] die Stammfunktion F(x)=
> [mm]1/3x^3+2[/mm] nehme oder die Stammfunktion [mm]F(x)=1/3x^3+100.[/mm]


Hallo Schmetterling99,

in dem Beispiel könntest du dir dies beispielsweise auf diese
Weise graphisch deutlich machen:

Du hast die "Originalfunktion"  $\ f$  mit  $\ f(x)\ =\ [mm] x^2$ [/mm]  und dazu zwei
verschiedene Stammfunktionen [mm] F_1 [/mm]  und [mm] F_2 [/mm]  mit

$\ [mm] F_1(x)\ [/mm] =\ [mm] \frac{x^3}{3}+2$ [/mm]  und  $\ [mm] F_2(x)\ [/mm] =\ [mm] \frac{x^3}{3}+100$ [/mm]

Diese beiden Stammfunktionen kannst du dann als die folgenden
beiden bestimmten Integrale auffassen und durch Flächeninhalte
veranschaulichen:

$\ [mm] F_1(x)\ [/mm] =\ [mm] \integral_{a_1}^x x^2\, [/mm] dx$   mit  $\ [mm] a_1\,=\, -\sqrt[3]{6}\ \approx\ [/mm] -1.817$

$\ [mm] F_2(x)\ [/mm] =\ [mm] \integral_{a_2}^x x^2\, [/mm] dx$   mit  $\ [mm] a_2\,=\, -\sqrt[3]{300}\ \approx\ [/mm] -6.694$

Diese beiden bestimmten Integrale unterscheiden sich nur durch
die Wahl ihrer Untergrenzen, was sich dann in der gewünschten
Weise auf die Größe der Flächenstücke auswirkt, die sie reprä-
sentieren.
Ich möchte dich sehr bitten, diese beiden Zeichnungen wirklich
durchzuführen !

LG ,   Al-Chwarizmi




Bezug
                
Bezug
Stammfunktion anschaulich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Mi 25.04.2018
Autor: Schmetterling99

Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


© Copyright 2003-25 www.schulmatheforum.de
Der Inhalt dieser Seite kann -- sofern nicht anders lautend gekennzeichnet -- durch jedermann gemäß den Bestimmungen der Lizenz für Freie Inhalte genutzt werden.